An improved approximation for assessing the statistical significance of molecular sequence features

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Improved Approximation for Assessing the Statistical Significance of Molecular Sequence Features

Using random walk theory, we first establish explicitly the exact distribution of the maximal partial sum of a sequence of independent and identically distributed random variables. This result allows us to obtain a new approximation of the distribution of the local score of one sequence. This approximation improves the one given par Karlin et al., which can be deduced from this new formula. We ...

متن کامل

Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes.

An unusual pattern in a nucleic acid or protein sequence or a region of strong similarity shared by two or more sequences may have biological significance. It is therefore desirable to know whether such a pattern can have arisen simply by chance. To identify interesting sequence patterns, appropriate scoring values can be assigned to the individual residues of a single sequence or to sets of re...

متن کامل

Assessing the Statistical Significance of Overrepresented Oligonucleotides

Assessing statistical significance of over-representation of exceptional words is becoming an important task in computational biology. We show on two problems how large deviation methodology applies. First, when some oligomer H occurs more often than expected, e.g. may be overrepresented, large deviations allow for a very efficient computation of the so-called p-value. The second problem we add...

متن کامل

Assessing the statistical significance of association rules

An association rule is statistically significant, if it has a small probability to occur by chance. It is well-known that the traditional frequency-confidence framework does not produce statistically significant rules. It can both accept spurious rules (type 1 error) and reject significant rules (type 2 error). The same problem concerns other commonly used interestingness measures and pruning h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Applied Probability

سال: 2003

ISSN: 0021-9002,1475-6072

DOI: 10.1017/s0021900200019409